skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Yezhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 11, 2026
  2. Free, publicly-accessible full text available February 18, 2026
  3. Free, publicly-accessible full text available February 26, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available November 10, 2025
  6. When trained on biased datasets, Deep Neural Networks (DNNs) often make predictions based on attributes derived from features spuriously correlated with the target labels. This is especially problematic if these irrelevant features are easier for the model to learn than the truly relevant ones. Many existing approaches, called debiasing methods, have been proposed to address this issue, but they often require predefined bias labels and entail significantly increased computational complexity by incorporating extra auxiliary models. Instead, we provide an orthogonal perspective from the existing approaches, inspired by cognitive science, specifically Global Workspace Theory (GWT). Our method, Debiasing Global Workspace (DGW), is a novel debiasing framework that consists of specialized modules and a shared workspace, allowing for increased modularity and improved debiasing performance. Additionally, DGW enhances the transparency of decision-making processes by visualizing which features of the inputs the model focuses on during training and inference through attention masks. We begin by proposing an instantiation of GWT for the debiasing method. We then outline the implementation of each component within DGW. At the end, we validate our method across various biased datasets, proving its effectiveness in mitigating biases and improving model performance. 
    more » « less
    Free, publicly-accessible full text available December 14, 2025